Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aqua(1,10-phenanthroline)(thiodiglycolato)cobalt(II)

In the title cobalt compound, $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$], the distorted octahedron around the Co atom is formed by the O atom from a water molecule, two N atoms from the heterocycle, two carboxyl O atoms and an S atom from the dianion. Hydrogen bonds extend the structure into a two-dimensional network.

Comment

The S atom of thiodiglycolic acid may be coordinated to metal atoms. However, only a few metal-thiodiglycolate complexes have been reported (Bonomo et al., 1982; Baggio et al., 1996, 1999; Kopel et al., 2003; Grirrane et al., 2003).

(I)

In the title compound, (I), the coordination polyhedron around the Co atom can be described as a distorted octahedron consisting of two N -atom donors from a 1,10 -phenanthroline, one O atom from the water molecule and three donors from the thiodiglycolate ligand (Fig. 1 and Table 1). The flexible dicarboxylate dianion is converted to a rigid ligand when the S -atom donor coordinates to the $\mathrm{Co}^{\mathrm{II}}$ atom, giving rise to the formation of two five-membered chelate rings. Both rings display a twist conformation. Each carboxyl group is coordinated in monodentate fashion to the cobalt centre. Both uncoordinated carboxyl O atoms form hydrogen bonds with water molecules, resulting in a two-dimensional hydrogen-bonding network (Fig. 2 and Table 2).

Experimental

A mixture of cobalt(II) acetate tetrahydrate ($0.0747 \mathrm{~g}, 0.30 \mathrm{mmol}$), thiodiglycolic acid $(0.0452 \mathrm{~g}, \quad 0.30 \mathrm{mmol}), \quad 1,10$-phenanthroline $(0.0595 \mathrm{~g}, 0.30 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was heated at 393 K for 24 h in a 20 ml Teflon-lined stainless steel autoclave. After cooling, blue block-shaped crystals of (I) were obtained.

Received 9 February 2005 Accepted 15 February 2005 Online 19 February 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.091$
Data-to-parameter ratio $=15.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
ORTEP-3 view (Farrugia, 1997) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
View of the two-dimensional hydrogen-bonding network of (I), with hydrogen bonds shown as dashed lines.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=405.28$
Monoclinic, $P 2_{\mathrm{a}_{1}} / n$
$a=8.0127$ (9) A
$b=22.524$ (3) \AA
$c=9.733$ (1) \AA
$\beta=113.420(1)^{\circ}$
$V=1611.9(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.784, T_{\text {max }}=0.898$
18142 measured reflections
$D_{x}=1.670 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3581
reflections
$\theta=2.8-24.7^{\circ}$
$\mu=1.23 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, blue
$0.14 \times 0.14 \times 0.09 \mathrm{~mm}$

3688 independent reflections 2997 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-29 \rightarrow 29$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0432 P)^{2}\right.} \\
&+0.4148 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.091$
$S=1.02$
3688 reflections
232 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Co} 1-\mathrm{O} 1$	$2.033(2)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.114(2)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.038(2)$	$\mathrm{Co} 1-\mathrm{N} 2$	$2.149(2)$
$\mathrm{Co} 1-\mathrm{O} 1 W$			$2.5191(7)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3$	$94.78(8)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 2$	$88.34(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 W$	$92.07(8)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$77.91(7)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 1 W$	$166.26(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{S} 1$	$80.51(5)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$91.64(7)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{S} 1$	$81.51(5)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$	$100.60(7)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{S} 1$	$87.90(5)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1$	$91.08(7)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{S} 1$	$172.03(5)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$169.55(7)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{S} 1$	$109.95(5)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 2$	$87.07(7)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.84(1)$	$1.93(1)$	$2.764(3)$	$170(3)$
O1 $W-\mathrm{H} 1 W 2 \cdots 4^{\mathrm{ii}}$	$0.85(3)$	$1.82(3)$	$2.662(3)$	$179(3)$

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $x-1, y, z$.
The H atoms bonded to C atoms were positioned geometrically and included in the refinement using the riding-model approximation $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ for CH and $\mathrm{C}-\mathrm{H}=0.97 \AA$ for CH_{2}, and $U_{\text {iso }}(\mathrm{H})=$ $\left.1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water H atoms were located in a difference Fourier map and refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and with fixed isotropic displacement parameters of $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank Professor Seik Weng Ng for his kind help in the single-crystal structure analysis and reference information and the National Natural Science Foundation of China (grant No. 50073019).

References

Baggio, R., Perec, M. \& Garland, M. T. (1996). Acta Cryst. C52, 2457-2460. Baggio, R., Garland, M. T., Manzur, J. Pena, O., Perec, M., Spodine, E. \& Vega, A. (1999). Inorg. Chim. Acta, 286, 74-79.

Bonomo, R. P., Rizzarelli, E., Bresciani-Pahor, N. \& Nardin, G. (1982). J. Chem. Soc. Dalton Trans. pp. 681-685.
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Grirrane, A., Pastor, A., Galindo, A., Ienco, A., Mealli, C. \& Rosa, P. (2003). Chem. Commun. pp. 512-513.

Kopel, P., Travnicek, Z., Marek, J., Korabik, M. \& Mrozinski, J. (2003). Polyhedron, 22, 411-418.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

