metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Yi Wu,^a Lin-Ming Xie,^a Hong-Yin He,^a Xia Zhou^a and Long-Guan Zhu^b*

^aDepartment of Chemical Engineering, Jiaxing College, Jiaxing 314001, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.038 wR factor = 0.091 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title cobalt compound, $[Co(C_4H_4O_4S)(C_{12}H_8N_2)-(H_2O)]$, the distorted octahedron around the Co atom is formed by the O atom from a water molecule, two N atoms from the heterocycle, two carboxyl O atoms and an S atom from the dianion. Hydrogen bonds extend the structure into a two-dimensional network.

Comment

The S atom of thiodiglycolic acid may be coordinated to metal atoms. However, only a few metal-thiodiglycolate complexes have been reported (Bonomo *et al.*, 1982; Baggio *et al.*, 1996, 1999; Kopel *et al.*, 2003; Grirrane *et al.*, 2003).

In the title compound, (I), the coordination polyhedron around the Co atom can be described as a distorted octahedron consisting of two N-atom donors from a 1,10-phenanthroline, one O atom from the water molecule and three donors from the thiodiglycolate ligand (Fig. 1 and Table 1). The flexible dicarboxylate dianion is converted to a rigid ligand when the S-atom donor coordinates to the Co^{II} atom, giving rise to the formation of two five-membered chelate rings. Both rings display a twist conformation. Each carboxyl group is coordinated in monodentate fashion to the cobalt centre. Both uncoordinated carboxyl O atoms form hydrogen bonds with water molecules, resulting in a two-dimensional hydrogen-bonding network (Fig. 2 and Table 2).

Experimental

A mixture of cobalt(II) acetate tetrahydrate (0.0747 g, 0.30 mmol), thiodiglycolic acid (0.0452 g, 0.30 mmol), 1,10-phenanthroline (0.0595 g, 0.30 mmol) and water (10 ml) was heated at 393 K for 24 h in a 20 ml Teflon-lined stainless steel autoclave. After cooling, blue block-shaped crystals of (I) were obtained.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Aqua(1,10-phenanthroline)(thiodiglycolato)cobalt(II)

Received 9 February 2005 Accepted 15 February 2005 Online 19 February 2005

Figure 1

ORTEP-3 view (Farrugia, 1997) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

View of the two-dimensional hydrogen-bonding network of (I), with hydrogen bonds shown as dashed lines.

Crystal data

$[Co(C_4H_4O_4S)(C_{12}H_8N_2)(H_2O)]$	$D_x = 1.670 \text{ Mg m}^{-3}$
$M_r = 405.28$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3581
a = 8.0127 (9) Å	reflections
b = 22.524 (3) Å	$\theta = 2.8-24.7^{\circ}$
c = 9.733 (1) Å	$\mu = 1.23 \text{ mm}^{-1}$
$\beta = 113.420(1)^{\circ}$	T = 295 (2) K
V = 1611.9 (3) Å ³	Block, blue
Z = 4	0.14 \times 0.14 \times 0.09 mm
Data collection	
Bruker SMART APEX area-	3688 independent reflections
detector diffractometer	2997 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Bruker, 2002)	$h = -10 \rightarrow 10$
$T_{\rm min} = 0.784, \ T_{\rm max} = 0.898$	$k = -29 \rightarrow 29$
18 142 measured reflections	$l = -12 \rightarrow 12$

18 142 measured reflections

Refinement

Refinement on F^2	w
$R[F^2 > 2\sigma(F^2)] = 0.038$	
$wR(F^2) = 0.091$	
S = 1.02	(2
3688 reflections	Δ
232 parameters	Δ
H atoms treated by a mixture of	
independent and constrained	
refinement	

 $= 1/[\sigma^2(F_o^2) + (0.0432P)^2]$ + 0.4148Pwhere $P = (F_o^2 + 2F_c^2)/3$ $\Delta/\sigma)_{\rm max} = 0.001$ $\rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$ $\rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Co1-O1	2.033 (2)	Co1-N1	2.114 (2)
Co1-O3	2.038 (2)	Co1-N2	2.149 (2)
Co1-O1W	2.084 (2)	Co1-S1	2.5191 (7)
01 - Co1 - O3	94,78 (8)	O1W - Co1 - N2	88.34 (8)
O1-Co1-O1W	92.07 (8)	N1-Co1-N2	77.91 (7)
O3-Co1-O1W	166.26 (8)	O1-Co1-S1	80.51 (5)
O1-Co1-N1	91.64 (7)	O3-Co1-S1	81.51 (5)
O3-Co1-N1	100.60(7)	O1W-Co1-S1	87.90 (5)
O1W-Co1-N1	91.08 (7)	N1-Co1-S1	172.03 (5)
O1-Co1-N2	169.55 (7)	N2-Co1-S1	109.95 (5)
O3-Co1-N2	87.07 (7)		

Table 2			
Hydrogen-bonding geometry	(Å.	°)	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1W - H1W1 \cdots O2^{i} \\ O1W - H1W2 \cdots O4^{ii} \end{array}$	0.84 (1) 0.85 (3)	1.93 (1) 1.82 (3)	2.764 (3) 2.662 (3)	170 (3) 179 (3)
	1.2 1.4			

Symmetry codes: (i) $x - \frac{1}{2}, \frac{3}{2} - y, z - \frac{1}{2}$; (ii) x - 1, y, z.

The H atoms bonded to C atoms were positioned geometrically and included in the refinement using the riding-model approximation $[C-H = 0.93 \text{ Å for CH and } C-H = 0.97 \text{ Å for CH}_2$, and $U_{iso}(H) =$ $1.2U_{eq}(C)$]. The water H atoms were located in a difference Fourier map and refined with distance restraints of O-H = 0.85 (1) Å and with fixed isotropic displacement parameters of $U_{iso}(H) = 0.05 \text{ Å}^2$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank Professor Seik Weng Ng for his kind help in the single-crystal structure analysis and reference information and the National Natural Science Foundation of China (grant No. 50073019).

References

Baggio, R., Perec, M. & Garland, M. T. (1996). Acta Cryst. C52, 2457-2460.

Baggio, R., Garland, M. T., Manzur, J. Pena, O., Perec, M., Spodine, E. & Vega, A. (1999). Inorg. Chim. Acta, 286, 74-79.

Bonomo, R. P., Rizzarelli, E., Bresciani-Pahor, N. & Nardin, G. (1982). J. Chem. Soc. Dalton Trans. pp. 681-685.

Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Grirrane, A., Pastor, A., Galindo, A., Ienco, A., Mealli, C. & Rosa, P. (2003). Chem. Commun. pp. 512-513.

Kopel, P., Travnicek, Z., Marek, J., Korabik, M. & Mrozinski, J. (2003). Polyhedron, 22, 411-418.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.